lunes, 8 de octubre de 2012

Deformaciones y tensiones en las vigas


Si se calculan las componentes del tensor de deformaciones a partir de estos desplazamientos se llega a:


\varepsilon_{xx} = \frac{\partial u_x}{\partial x} = -y\frac{d^2 w}{dx^2} \qquad
\varepsilon_{yy} = \frac{\partial u_y}{\partial y} = 0 \qquad 
\varepsilon_{xy} = \frac{1}{2}\left ( \frac{\partial u_x}{\partial y}+\frac{\partial u_y}{\partial x} \right ) = {0}
A partir de estas deformaciones se pueden obtener las tensiones usando las ecuaciones de Lamé-Hooke, asumiendo  \sigma_{yy}={0},\sigma_{zz}={0}:

\sigma_{xx}=-E y\frac{d^2 w}{dx^2} \qquad \sigma_{xy} = {0}

Donde E es el módulo de elasticidad longitudinal, o módulo de Young, y G el módulo de elasticidad transversal. Es claro que la teoría de Euler-Bernoulli es incapaz de aproximar la energía de deformacion tangencial, para tal fin debera recurrirse a la teoría de Timoshenko en la cual:

\varepsilon_{xy} = \frac{1}{2}\left (\frac{dw}{dx}-\theta_z \right)

No hay comentarios:

Publicar un comentario